Climate Change Mitigation: Will we make it?

Natasa Markovska

IPCC Focal Point - Macedonia

Research Centre for Energy and Sustainable Development
Macedonian Academy of Sciences and Arts

SDEWES 2015, Dubrovnik, 02.10.2015

Overview

- The past trends and driving factors of the emissions
- Limiting the global warming
- Mitigation measures and polices
- Prerequisites for effective mitigation
- ► Paris 2015: Latest developments
- ▶ Will we make it?

The past trends and driving factors of the emissions

GHG emissions growth between 2000 and 2010 has been larger than in the previous three decades.

About half of the cumulative anthropogenic CO₂ emissions between 1750 and 2010 have occurred in the last 40 years.

Regional patterns of GHG emissions are shifting along with changes in the world economy.

GHG Emissions by Country Group and Economic Sector

GHG emissions rise with growth in GDP and population.

The long-standing trend of decarbonization has reversed.

Limiting the global warming

Without additional mitigation, global mean surface temperature is projected to increase by 3.7 to 4.8°C over the 21st century.

Based on WGII AR5 Figure 19.4

Stabilization of atmospheric GHG concentrations requires moving away from business as usual.

Lower ambition mitigation goals require similar reductions of **GHG** emissions.

Mitigation involves substantial upscaling of low-carbon energy.

Based on Figure SPM.4

Working Group III contribution to the

IPCC Fifth Assessment Report

Mitigation involves substantial upscaling of low-carbon energy.

Many scenarios make it at least about as likely as not that warming will remain below 2°C relative to pre-industrial levels.

Before 2030

"Immediate Action"

Based on Figure SPM.5

Still, between 2030 and 2050, emissions would have to be reduced at an unprecedented rate...

Before 2030 GHG Emissions Pathways [GtCO,eq/yr] 60 55 50 45 40 35 30 **Annual GHG** Emissions in 2030 25 <50 GtCO₂eq 20

Based on Figure SPM.5

2015

2020

2025

2030

2005

2010

...implying a rapid scale-up of low-carbon energy.

Working Group III contribution to the

IPCC Fifth Assessment Report

Delaying emissions reductions increases the difficulty and narrows the options for mitigation.

Before 2030
GHG Emissions Pathways [GtCO,eq/yr]

"Delayed Mitigation"

"Immediate Action"

Based on Figure SPM.5

Delaying emissions reductions increases the difficulty and narrows the options for mitigation.

Before 2030 GHG Emissions Pathways [GtCO,eq/yr]

After 2030

Delaying emissions reductions increases the difficulty and narrows the options for mitigation.

Mitigation measures and policies

Baseline scenarios suggest rising GHG emissions in all sectors, except for CO₂ emissions from the land-use sector.

BASELINES

Based on Figure TS.15

Mitigation requires changes throughout the economy. Systemic approaches are expected to be most effective.

450 ppm CO₂eq with Carbon Dioxide Capture and Storage

Based on Figure TS.17

Mitigation efforts in one sector determine efforts in others.

450 ppm CO₂eq without Carbon Dioxide Capture and Storage

Based on Figure TS.17

Decarbonization of energy supply is a key requirement for limiting warming to 2°C.

Contribution of Low Carbon Technologies to Energy Supply (430-530 ppm CO₂eq Scenarios)

Based on Figure 7.11

Energy demand reductions can provide flexibility, hedge against risks, avoid lock-in and provide co-benefits.

Contribution of Low Carbon Technologies to Energy Supply (430-530 ppm CO₂eq Scenarios)

Based on Figure 7.11

Reducing energy demand through efficiency enhancements and behavioural changes is a key mitigation strategy.

Reducing energy demand through efficiency enhancements and behavioural changes are a key mitigation strategy.

Examples from electricity generation: Low emission technologies exist, but emissions are reduced to different degrees.

Emission Intensity [gCO₃eq/KWh], Based on Lifecycle Emisions

^{*} Median Value in Mitigation Scenarios (430-530 ppm CO₃eq by 2100)

Based on Figure 7.7

Due to cost decline, renewable energy technologies are becoming economical solutions in an increasing number of countries.

Based on Figure 7.7

PV Revolution

Exhibit 2
Welcome to the Terrordome... \$/MMBTU by Energy Type

Source: EIA, CIA, World Bank, Bernstein analysis

PV Revolution

Growth of Wind and Photovoltaics

Grid parity in 102 countries

Global costs rise with the ambition of the mitigation goal.

Technological limitations can increase mitigation costs.

Mitigation can result in co-benefits for human health and other societal goals.

Based on Figures SPM.6 and 12.23

Climate change mitigation can result in co-benefits for human health and other societal goals.

Based on Figures SPM.6 and 12.23

(Jobs per megawatt of average capacity) Manufacturing, Operating & construction, maintenance/ Total instalation fuel processing

Note: Based on findings from a range of studies published in 2001–04. Assumed capacity factor is

Table 8: Average employment over life of facility

Average emplyment over life of facility

1.20-4.80

0.38-2.44

0.27

0.74

0.70

6.96-11.01

0.70 - 2.78

0.78-2.84

1.01

0.95

43

Solar PV 5.76-6.21

Source: UNEP, ILO, IOE and ITUC (2008)

0.43 - 2.51

0.40

0.27

0.25

21% for solar PV, 35% for wind, 80% for coal, and 85% for biomass and natural gas.

(jobs per megawatt of average capacity)

Wind power

Biomass

Coal-fired

Natural gas-fired

Prerequisites for effective mitigation

Changes in investment patterns and appropriate policies

Substantial reductions in emissions require significant changes in investment patterns.

Based on Figure SPM.9

There has been a considerable increase in national and subnational mitigation policies since AR4.

Sector-specific policies have been more widely used than economy-wide policies.

Based on Figure 10.15

Science for technology advancement and informed policy design

Hot topics

- Better integration of wind and solar
- Integration of power, heating, cooling, water and transport systems
- Market arbitrage (time delay, power-heat, powerwater, demand management, power-fuels)
- Solution for road freight, shipping, aviation and high temperature processes - biomass + synthetic fuels?
- Quantification of socioeconomic impacts of mitigation measures and policies

International cooperation across scales

Based on Figure 13.1

Latest developmen (UNFCC - INDC portal, 1 Oct 2015)

- Submitted INDCs: 120
- ► Parties represented: 148
- Global GHG emissions % covered by Parties which already submitted: over 85%
- ► Expected GHG variation compared to 1990 with the submitted INDCs: +19% (source: Factor CO2, No.4, Sept 2015)

Latest developments

- European Union: At least -40% (vs 1990)
- Mexico: -22% (vs BAU)
- ► USA: -26%/-28% (vs 2005) in 2025
- Russia: -25%/-30% (vs 1990)
- Canada: -30% (vs 2005)
- Morocco: -13% (vs BAU)
- China: -60%/-65% per unit of GDP (vs 2005)
- Republic of Korea -37% (vs BAU)
- Macedonia: -36% (vs BAU)
- Australia: -26%/-28% (vs 2005)

Latest developments

- The commitments made, and likely to be made by December, will not by themselves be enough to achieve the 2 degrees goal.
- Approaches for bolstering these targets:
 - Engaging "non-state actors" (cities, local governments and businesses);
 - ► INDCs should be subject to regular review and ratcheting up in the years after the Paris meeting.
- Sorting out the finance part of the deal remains a burning issue.
- There is dispute over a number of issues such as "loss and damage".
- Questions still hovered over what would appear in the core agreement.

Will we make it?

The idea of success might seem as a long shot, but the present actions bring hope that all the individual agents will advance their interests coherently towards the common goal of saving the planet.

Will we make it?

The role of science:

- ► To assess the risks and options;
- To innovate technologies and devise new solutions;
- In a rigours and policy-neutral way, to inform the processes for reaching decisions.