ACHIEVING WATER SUSTAINABILITY via HOLISTIC WATER MINIMISATION

Zainuddin A. Manan Process Systems Engineering Centre, Research Institute on Sustainable Environment (RISE), Universiti Teknologi Malaysia

10th Conference on Sustainable Development of Energy, Water and Environment Systems

September 27 - October 3, 2015, Dubrovnik, Croatia

zain@cheme.utm.my

www.utm.my

innovative • entrepreneurial • global

"Water shortage is one of highest global risks!"

WEF Global Risk Report, 2014

www.utm.my

"By 2030, the world is projected to face a 40% global water deficit under the business-as-usual climate scenario"

The United Nations World Water Development Report 2015

www.utm.my

innovative • entrepreneurial • global

What Can We Do?

www.utm.my

innovative • entrepreneurial • global

ACHIEVING WATER SUSTAINABILITY via HOLISTIC WATER MINIMISATION

Zainuddin A. Manan Process Systems Engineering Centre, Research Institute on Sustainable Environment (RISE), Universiti Teknologi Malaysia

10th Conference on Sustainable Development of Energy, Water and Environment Systems

September 27 - October 3, 2015, Dubrovnik, Croatia

zain@cheme.utm.my

www.utm.my

innovative • entrepreneurial • global

□ The W3E* Nexus Achieving Water Sustainability : Piece-meal vs Holistic Strategy The Systems Approach Public Service Broadcast (time permitting) Take Home Messages

* Water, Energy, Environment & Economy

www.utm.my

innovative • entrepreneurial • global 7

User Take Charge Industry*; Public & Commercial Facilities; Domestic & Individuals

Change Behavior!

*Include agriculture

Some Typical Solutions?

Water treatment system – Self generation of fresh water?

Rainwater Harvesting System?

Bigger WW Treatment Plants?

Water-Efficient Gadgets?

ENGINEERING WATER SUSTAINABILITY via *HOLISTIC* WATER MINIMISATION

10th Conference on Sustainable Development of Energy, Water and Environment Systems

September 27 - October 3, 2015, Dubrovnik, Croatia

zain@cheme.utm.my

www.utm.my

innovative • entrepreneurial • global

Engineering Practice

Showcase Project

Assess Your Plant's True Water-Savings Potential

Using the minimum water network involves detailed analysis of plant configuration and design, material and energy balances, design and thermodynamic constraints

A CASE STUDY: SETTING TARGETS FOR MINIMUM WATER NETWORK IN A SEMICONDUCTOR FABRICATION PLANT

Water is a major utility for many sectors of the chemical process industries, but for semiconductor manufacturers, it is also a precious commodity. The extreme water demands of a semiconductor fabrication plant — from the ultrapure water required for chipmaking processes to potable water and, increasingly, recycled water for plant operations and maintenance — provide an ideal case study for the application of MWN benchmarking techniques.

In this case, the facility is MySem, a semiconductor fabrication plan in Malaysia. ; While the facility's primary activity is research and development (R&D), it produces 6-in. and 8-in. wafers. Figures 3 and 4 show the fab's water distribution network. Water demands include deionized (DI) process water for solvent processes, acid processes, wet cleaning and tools cleaning; the rest is for plant operations such as abatement, scrubber, cooling tower and wet bench cooling, and maintenance such as toilet flushing, office cleaning, wash basin, toilet pipes and ablution, as shown in Figure 5.

Total water consumption varied throughout the year, depending on wafer production and equipment conditions. During the month of the benchmarking study, the fab's estimated total freshwater consumption was 42.6 m³/h. Of this value, 31.78 m³/h was used for DI water production and the rest for plant operations and maintenance.

Step 1. Specify the limiting water data

This step involved detailed process survey and line tracing, establishing process stream material balances and conducting water quality tests. Stream flowrates were extracted from data collected by either the plant's distributed control system (DCS) or ultrasonic flowmeters. Depending on the stream audited, tests for total suspended solids (TSS), biological oxygen demand (BOD), chemical oxygen demand (COD), total dissolved solids (TDS) were conducted onsite. For processes that only used ultrapure water, TSS levels were negligible. BOD was absent since no biological contaminants were present. COD was a component of TDS. TDS

FIGURE 4. Water uses for plant operations and maintenance

CHEMICAL

GRADUATE

Jiří Jaromír Klemeš, Petar Sabev Varbanov, Sharifah Rafidah Wan Alwi, Zainuddin Abdul Manan

PROCESS INTEGRATION AND INTENSIFICATION

SAVING ENERGY, WATER AND RESOURCES

Copyrighted Material

WOODHEAD PUBLISHING SERIES IN ENERGY

Chapter 3 – Water Management & Minimisation

Handbook of Process Integration (PI)

Minimisation of energy and water use, waste and emissions

Edited by Jiří J. Klemeš

WP

17

Copyrighted Maternal

innovative • entrepreneurial • global

What has been done so far?

Summary of State-of-the-Art on WM Research

Key Topics	WPA	Mathematical Programming		
Network design	\checkmark	\checkmark		
Minimum water targeting & Design for 3R	\checkmark	\checkmark		
Process changes	Highlighted here	Highlighted here		
Minimum water network	Highlighted here	Highlighted here		
Holistic water minimisation options	Highlighted here	Highlighted here		
Pure and impure fresh water feed	\checkmark			
Cost estimation involve 3R	\checkmark	\checkmark		
Batch Processes, Simultaneous Water & Energy		\checkmark		
Inter-Plant Water Integration				

Research Gap on Mathematical Programming Technique

Minimum Water Targeting

Gap: only consider water reuse, recycle and regeneration

Process Changes

Gap: does not consider source elimination, reduction and outsourcing

Preliminary cost estimation

Gap: does not include all water minimisation schemes in cost estimation

Rigorous Solution

Handani, Z.B., Wan Alwi, S.R., Hashim, H., **Z.A. Manan**, Holistic Approach For Design Of Minimum Water Networks Using The Mixed Integer Linear Programming (MILP) Technique, Industrial and Engineering Chemistry Research, Volume 49, Issue 12, 16 June 2010, Pages 5742-5751.

Problem Statement

Given <u>a set of global water operations</u> for various water sources and demands containing <u>multiple contaminants</u>, it is desired to design an <u>optimal and holistic water</u> <u>network</u> with <u>maximum net annual savings</u> that considers all <u>water management hierarchy</u> options to achieve desired <u>payback period</u> for <u>retrofit</u> design using <u>mathematical programming</u> approach

Water Sources and Demands

Water source (output)

Water demand (input)

Water demand (input)

Water source (output)

Water demand (input)

www.utm.my

innovative • entrepreneurial • global ²⁶

Methodology

Superstructure for MWR network that includes outsourcing and regeneration options.

FW_j = Freshwater supplied to demand jB_j = Adjusted flowrate of water demand jA_i = Adjusted flowrate of water source iWW_i = Flowrate of wastewater F_{i,j} = Flowrate of water from source i to demand jF_{i,r} = Flowrate of water from source i to regeneration unit rF_{r,j} = Flowrate of water from regeneration unit r to demand jFosos,j = Flowrate of water from outsource *os* to demand j

Handani, Z.B., Wan Alwi, S.R., Hashim, H., **Manan, Z.A.**, Holistic Approach For Design Of Minimum Water Networks Using The Mixed Integer Linear Programming (MILP) Technique, Industrial and Engineering Chemistry Research, Volume 49, Issue 12, 16 June 2010, Pages 5742-5751.

Stage 2: E-Mode ~ Mixed Integer Nonlinear Programming (MINLP)

Objective function: MAXIMISE NET ANNUAL SAVINGS

Subject to : ➤ Constraint in STAGE 1 ➤ Additional Constraints

- ✓ Total capital cost involving:
 - Capital investment for external water sources unit
 - Capital investment for regeneration unit
 - Capital investment for reuse system
 - Capital investment for elimination unit
 - Capital investment for reduction unit
- ✓ Payback period constraint

MINLP: - capital cost is a function of the flow rate and calculated using sixth-tenth factor rule - selection of water minimisation schemes

Z. Bahiyah, S. R. Wan Alwi, H. Hashim, and **Z. A. Manan**, "Optimal Design Of Water Networks Involving Multiple Contaminants For Global Water Operations", Ind Eng Res and Design, 2010, 49, 5742-5751.

Payback period constraint

 $\frac{\text{Net Capital Investment (NCI)}}{\text{Net Annual Savings (NAS)}} \le \text{payback period}$

$$\begin{array}{c} \underbrace{CRegU}_{\text{Regeneration unit cost}} + \underbrace{COsU}_{\text{Reuse system cost}} + \underbrace{CReuse}_{\text{Reuse system cost}} + \underbrace{CReuse}_{\text{Reuse}_{\text{I}}} + \underbrace{CReuse}_{\text{I}} + \underbrace{CReus$$

Engineering Sustainable Water System, Holistically

www.utm.my

innovative • entrepreneurial • global

Water network superstructure to obtain the adjusted demand flow rate, B_i when possible source elimination and reduction are considered.

 $\checkmark X_{i,e'} X_{i,re'} X_{i,o}$: BINARY/SELECTION VARIABLES

 $\sigma_{i,re}$: Percentage of fresh water reduction

Z. Bahiyah, S. R. Wan Alwi, H. Hashim, and **Z. A. Manan**, Optimal Design Of Water Networks Involving Multiple Contaminants For Global Water Operations, Ind Eng Res and Design, 2010, 49, 5742-5751.

User interactions

Insights

Managing complexity

A new look at urban water saving

Researchers at Universiti Teknologi, Malaysia, have described an approach to adapting an important industrial water minimisation technique for use in urban water systems.

The authors see the approach, water pinch analysis (WPA), as the most significant development in water minimisation design in the last ten years. Until now it has been applied only to industrial water networks. This work shows how the approach can be used in conjunction with a simple fivelevel water management hierarchy (the ZM water management hierarchy) to minimise water use in the urban setting and considers, as an example, the water system of the Sultan Ismail Mosque in Universiti Teknologi Malaysia (UTIM)

Use of a conservation strategy such as the ZM hierarchy is seen as a more practical approach for urban systems where, as the authors say, educating to change public attitudes has not so far resulted in a high degree of domestic water saving.

The ZM hierarchy's five levels of options for water management range from the most preferred source elimination (1) - to the least preferred - discharge after

treatment (5). Levels 2 to 4 relate to source reduction, direct reuse and reclamation. Possibilities for minimisation are concerned with levels 1 to 4.

If eliminating or reducing water intake at source (1 or 2) is not possible, recycling comes into the picture, either as direct reuse (3) or reclamation (4). For these purposes direct reuse means a subsequent use without intervening treatment, as in hand basin water used to flush toilets. Reclamation implies intermediate treatment and is divided into regeneration-recycling where the reclaimed water is used in the same equipment or process after treatment. Regeneration-reuse is defined as reuse of treated water in other equipment after treatment. Maximum water recovery

within a system is achieved by making best use of the inherent reuse and regeneration-reuse opportunities. The systematic approach of WPA allows that goal to be achieved by integrating the various water use activities in the system. In the case of the mosque there were eight primary demands for water (kitchen, showers, toilets etc). With recycling there are six possible sources of water within the system - harvested rainwater together with used water from the kitchen, ablutions, wash basins, The Sultan Ismail Mosture, where the showers and mosque cleaning. potential for saving water using water

Following the first step of a

system water audit, WPA goes on

to identify these primary demands

and possibilities for integration as

a basis for the vital third step of

establishing the minimum water

and wastewater targets for the

system. Here the UTM team

developed a new technique that

they call water cascade analysis

targeting method that eliminates

the time-consuming trial and

error steps of a currently used

established a target fresh water

requirement of 10,16tonnes/day

demand of 29, Itonnes, giving a

potential saving of 65,1%. The

wastewater discharge showed a

reduction of 51.5%. These figures

were assessed as achievable with

regeneration and can, of course,

only be realised when the system

is re-designed to incorporate the

necessary water recovery features

- the vital fourth step of pinch

analysis. The final step considers

evaluates the economics of any

retrofit. If regeneration was

In this example WCA

as against a current daily

corresponding target for

recycling but without any

graphical approach,

(WCA), a numerical water

pinch analysis is being assessed. considered the freshwater and wastewater reductions could be increased to 85.5% and

67.7% respectively. With or without regeneration the savings were shown to be far. in excess of those presented. through a more conventional system analysis by another group at the university.

In the view of the authors the central advantage of the WPA approach is that it provides a true baseline target for the system. At present the engineer can only seek for an improvement based on a previous design achievement, in effect improving gradually on a learning curve always based on an apparent baseline target. He does not know what is the ultimate minimum water requirement for the network.

Based on a paper, Water pinch analysis for urban systems: a paradigm shift for water minimisation, provided by Z. A. Manan (zain@fkkksa.utm.my), S. R. Wan Alwi and Z. Ujang. the suggested process changes and **Chemical Engineering** Department, Universiti Teknologi Malaysia, Johor, Malaysia.

Lets Try Again..

Cost cutting nitrate removal process

Global chemical group BASF has donated its patent for a novel nitrate removal process to America's Water Environment Research Foundation:

The process, called the Timeswitch method, allows nitrate removal, through nitrification and denitrification. to be achieved in a single reactor vessel rather than in separateaerobic and anoxic tanks which had previously been regarded as essential. Capital costs of constructing an additional tank in

an existing plant can therefore be avoided when, as frequently happens now, nitrate becomes a critical factor in effluent discharge. According to WERF nitrogen control is one of North America's

most significant environmental water quality issues. Nitrogen discharges are the primary cause of water quality and environmental problems in the Gulf of Mexico, Chesapeake Bay, the Outer Banks of North Carolina and other regions. For BASF nitrate was a problem in the effluent output

from the company's Freeport, Texas, manufacturing site. The site treatment plant had to be modified to address the problem. BASF's wastewater experts at Freeport and others from BASF locations in the United States and Germay jointly developed the Timeswitch technology using computer simulations and pilot plant testing. BASF did not implement the process, but has retained rights to practice the technology under the donation agreement with WERE

The donation was made at a

ceremony in Washington, D.C. on 16 December and was warmly welcomed by WERF Executive Director, Glenn Reinhardt, He said:'We are very appreciative of BASF's donation and excited about the cooperation with BASF on a project that may be ouite useful in adding to the available nitrogen removal methods."

Contact: Jack Maurer, BASF. Email: maurerj1@bast.com Manan, Z. A., Wan Alwi, S. R. and Ujang, Z. Water Minimisation for Urban Systems: Α Case Study on Sultan Ismail Mosque in Universiti Teknologi Malaysia, Desalination Journal Vol. 194 (2006) 52-68

47 innovative • entrepreneurial • global

Methodology

Illustrative Case Study: Domestic Water Mimisation

Source Process Number	Cum F t/hr	Cum m t/hr	Demand Process Number	Cum F t/hr	Cum m t/hr
Abultion	20	2	Abultion	20	0
Bathing	120	12	Bathing	120	5
Washing car	160	44	Washing car	160	7
			Flushing toilet	170	11

Key parameters: Flowrate and Mass load

Z. A. Manan and S. R. Wan Alwi, Water Pinch Analysis Evolution Towards a Holistic Approach for Water Minimisation, Asia-Pac. J. Chem. Eng., Volume 2, Issue 6, Pages 544 – 553, 2007.

Methodology

Base Case

[Down-to-earth WM Case]

www.utm.my

innovative • entrepreneurial • global ⁵¹

Household Water Uses

Water Audit (Quantitative)

For a sample house:

ACTIVITIES	WATER(L/Day)	
BATHING	160	
ABULTION	60	
KITCHEN	130	
WASHING CLOTHES	180	
WASHING CAR	10	
WATERING PLANTS	50	
FLUSHING TOILETS	336	

"Superstructure"

www.utm.my

54 innovative • entrepreneurial • global

Network of Water Reuse Options

Which are the best reuse matches? How many blending options possible? Water ratios? How do we ensure contaminants do not affect processes?

Methodology

56

Problem Decomposition

[Step-Wise Approach]

Break into manageable parts

www.utm.my

innovative • entrepreneurial • global 57

Source 1: Ablution

59

Source 2: Bathing

Source Process Number	Cum F	Cum m		
	0	0		
Abultion	20	2		
Bathing	120	12		
Cumulative contaminant mass load (t/h)	120 160 mulative flowrate (t/hr)			

Source 3: Washing car

Source Process Number	Cum F	Cum m		
	0	0		
Abultion	20	2		
Bathing	120	12		
Washing car	160	44		

www.utm.my

innovative • entrepreneurial • global ⁶¹

Water source and demand composite curves

Minimum utility (water) targeting

www.utm.my

innovative • entrepreneurial • global 62

The Water Source Composite Curves

al

63

The Water Sink Composite Curves

64

The Water Sources and Demand Curves

Source and Demand Curves, The Minimum Water Targets

Better, (greener) ways?

Not to use water, Use less water

Change Process/Streams!

Lets Have Fun!

Better, (greener) ways?

1. Not to use?

2. Use less?

Apply W3E!

3. "Best-mix" options?

www.utm.my

innovative • entrepreneurial • global 68

Site Water Reduction

1. Direct Reuse

Use of various water sources to satisfy water demands

2. Source & Demand Manipulation

Source Elimination or Reduction

- Eliminate/reduce water source streamś above the pinch
 - E.g. Source switching
 - Parameter changes, equipment modifications, reaction chemistry (reduce)

Site Water Reduction

- 2. Source & Demand Manipulation
- **Demand Manipulation**

Above Pinch:

- Increase demand flowrates
- add new demands

Below Pinch:

Reduce demand flowrates

www.utm.my

eliminate demands

3. Regeneration – Reuse

Regenerate source streams across the pinch to get a higher quality source

Integrate with demands below pinch

- ✓ Reduce waste water
- ✓ Reduce fresh water

Network Design after WPA

72

Engineering Practice

Showcase Project

Assess Your Plant's True Water-Savings Potential

Using the minimum water network involves detailed analysis of plant configuration and design, material and energy balances, design and thermodynamic constraints

A CASE STUDY: SETTING TARGETS FOR MINIMUM WATER NETWORK IN A SEMICONDUCTOR FABRICATION PLANT

Water is a major utility for many sectors of the chemical process industries, but for semiconductor manufacturers, it is also a precious commodity. The extreme water demands of a semiconductor fabrication plant — from the ultrapure water required for chipmaking processes to potable water and, increasingly, recycled water for plant operations and maintenance — provide an ideal case study for the application of MWN benchmarking techniques.

In this case, the facility is MySem, a semiconductor fabrication plan in Malaysia. ; While the facility's primary activity is research and development (R&D), it produces 6-in. and 8-in. wafers. Figures 3 and 4 show the fab's water distribution network. Water demands include deionized (DI) process water for solvent processes, acid processes, wet cleaning and tools cleaning; the rest is for plant operations such as abatement, scrubber, cooling tower and wet bench cooling, and maintenance such as toilet flushing, office cleaning, wash basin, toilet pipes and ablution, as shown in Figure 5.

Total water consumption varied throughout the year, depending on wafer production and equipment conditions. During the month of the benchmarking study, the fab's estimated total freshwater consumption was 42.6 m³/h. Of this value, 31.78 m³/h was used for DI water production and the rest for plant operations and maintenance.

Step 1. Specify the limiting water data

This step involved detailed process survey and line tracing, establishing process stream material balances and conducting water quality tests. Stream flowrates were extracted from data collected by either the plant's distributed control system (DCS) or ultrasonic flowmeters. Depending on the stream audited, tests for total suspended solids (TSS), biological oxygen demand (BOD), chemical oxygen demand (COD), total dissolved solids (TDS) were conducted onsite. For processes that only used ultrapure water, TSS levels were negligible. BOD was absent since no biological contaminants were present. COD was a component of TDS. TDS

FIGURE 4. Water uses for plant operations and maintenance

CHEMICAL

Industrial Case Study

Wan Alwi, S. R. and **Z. A. Manan**, (2006). *A Holistic Framework For Design Of Cost Effective Minimum Water Utilisation Networks*. Journal of Environmental Management. 88 (2008) 219–252.

Z. A. Manan, S. R. Wan Alwi, M. H. Samingin and N. Misran, *Assess Your Plant's True Water-Saving Potential*, *Chemical Engineering*, December 2006.

Industrial Water Sources & Demands

Water Sources

INIVERSITI TEK

Sources	F, t/h	C, ppm	m, kg/h	Cum F,	, t/h Cu	m m,			
		x10 ³	x10 ³		kg/l	n x10 ³			
Source 1 (S ₁)	300	250	75	300		75			
Source 2 (S_2)	55	800	44	355	1	.19			
Source 3 (S_3)	70	850	59.5	425	1′	78.5			
Source 4 (S_4)	130	880	114.4	555	29	92.9			
Source 5 (S_5)	200	900	180 82.8	755	47	72.9	Total Cumulative waste water		
Source 6 (S_6)	90	920		845 <	55	55.7			
	D	emands	F,	, t/h	C, ppm	m, kg/h	Cum F,	Cum m,	
Demand 📄					x10 ³	x10 ³	t/h	kg/h x10 ³	
Processes	D	emand 1 (D1)		50	1	0.05	50	0.05	
	C	emand 2 (D2)		208.3	200	41.66	258.3	41.71	
	۵	Demand 3 (D3)		83.3	500	41.65	341.6	83.36	
	Γ	Demand 4 (D4)		220	900	198	561.6	281.36	
יא <i>ד</i>					·	75			
	w.utm	.my	in	novativ	e • ent	repreneu	rial • glol	bal 75	

Targeting;

Implementing Top Priority Water Minimisation Options

www.utm.my

innovative • entrepreneurial • global ⁷⁶

Source Elimination

Direct Reuse

Demand elimination

Yinling Tan and Manan, Z. A., Retrofit of Water Networks with Optimization of Existing Regeneration Units, Ind. Eng. Chem. Res. 2006, 45, 7592-7602.

Water Allocation; Network Design

Water Allocation Network

Se'

S₁

 S_2

S₁

www.utm

Fig. 10. The final Network Allocation Diagram (NAD) for the refinery.

Final Industrial Site Water Allocation Network

WMH-guided process changes

WMH levels	Specific process changes considered	New FW target, t/hr	New IWT+WW [based on limiting data] target, t/hr	New pinch point concentra ppm	New total I atio(all IWT considered target, t/hr	іwт)
Initial	None	39.94	34.85	22360	34.4500	
Reuse	Base case (MWR)	11.0400	0.0190	22 360	5.7090	
+ Elimination	Eliminate WB cooling 202 (D13) and 203 (D12)	8.3525	0.0215	22 360	3.0215	Before analysis
+ Reduction	WB reduction in Fab 1 and	6.7518	0.0258	4608	1.4216	
+	Heater WB201 reduction	6.7314	0.0264	4608	1.4454	After MWR
	Fab 1 return reduction	6.6094	0.0354	4608	1.3109	
	Option 1: EDI decommissioning	6.3038	0.0378	4608	1.0112	
	Increase RO rate of recovery	6.2110	0.0380	4608	0.9132	
	Reduce multimedia filter backwash and rinsing time	6.0857	0.0387	4608	0.7879	
	pollution system (D3 = 0.57 t/hr and S17 = 0.57 t/hr).	6.0831	0.0361	4608	0.7853	
	Cooling tower reduction (D2 = 5.86 t/hr)	5.9452	0.0382	4608	0.7874	
Outsourcing	Add a source S25=0.11 t/hr of C = 16 ppm by	5.8349	0.0379	4608	0.7871	
+	harvesting rainwater	5.7970	0	4608	0.7492	
	IWT to the maximum flowrate for a source from to C=52 ppm.	`	. /			After MWN
Minimum water network (MV targets		5.7970	0	4608	0.7492	

www.utm.my

innovative • entrepreneurial • global ⁸

86

Water Wise?

\$\$\$ Wise?

www.utm.my

innovative • entrepreneurial • global 87

Systematic Hierarchical Approach for Resilient Process Screening (SHARPS) technique

• Strategy 1: Substitution

Systematic Hierarchical Approach for Resilient Process Screening (SHARPS) technique

• Strategy 2: Intensification

SHARPS technique

S. R. Wan Alwi and **Z. A. Manan**. (2005) *SHARPS – A New Cost Screening Technique to Attain Cost-effective Minimum Water Network.* AiChe Journal, Vol 52, No. 11, November, 2006.

Multiple Contaminants

Localised Integration Localised Integration

www.utm.my

innovative • entrepreneurial • global ⁹²

Multiple Contaminants

Address with

Localised Integration Reconcile & iterate with other contaminants

Back to Rigorous Solution

Handani, Z.B., Wan Alwi, S.R., Hashim, H., **Z.A. Manan**, Holistic Approach For Design Of Minimum Water Networks Using The Mixed Integer Linear Programming (MILP) Technique, Industrial and Engineering Chemistry Research, Volume 49, Issue 12, 16 June 2010, Pages 5742-5751.

Stage 2: E-Mode ~ Mixed Integer Nonlinear Programming (MINLP)

Objective function: MAXIMISE NET ANNUAL SAVINGS

Industry; Public & Commercial Facilities; Domestic & Individuals

www.utm.my

innovative • entrepreneurial • global ¹⁰⁰

Industrial Case Study: A chlor-alkali plant (CCMC)

- 2 chlor-alkali plants (PGW1 and PGW2) and one coagulant plant (PGW3)
- Produced liquid chlorine, caustic soda, hydrochloric acid, sodium hypochlorite, hydrogen, ferric chloride, and polyaluminium chloride
- Applied the membrane cell process; one of the latest technologies to produce chlorine and caustic soda, has more economic value and environmental friendly.
- PGW1 uses an average of 680 m³ raw water (industrial and domestic) daily.
- 3 types water uses: process, non-process, and domestic uses

Water distribution of the chlor-alkali plant

Foo, D. C. Y., **Manan, Z. A.** and El-Halwagi, M. M. (2005). *Correct Identification of Limiting Water Data for Water Network Synthesis*, Clean Technology and Environmental Policy, No. 8, 96-104).

Optimal Water Network Design

Effects of Fresh Water Prices on Total Water Demand Flow Rates and Water Minimisation Schemes

Effects of Fresh Water Prices on Total Water Source Flow Rates and Water Minimisation Schemes

Industry; Public & Commercial Facilities; Domestic & Individuals

www.utm.my

innovative • entrepreneurial • global ¹⁰⁵

Urban Case Study: Sultan Ismail Mosque (SIM)

- Mainly used by the Muslim students and staff of UTM for prayer and educational activities
- Used for ablution, irrigation, shower, kitchen and toilet services as well as mosque cleaning (Wan Alwi, 2007)
- FW is supplied by SAJ and stored in four interconnected distribution tank
- The estimated fresh water usage for SIM is 11, 550 m³/yr (Ujang and Larsen, 2000).

Water distribution for SIM

www.utm.my

107 innovative • entrepreneurial • global

Optimal Water Network Design for SIM

Results

			MODWN	
	Initial	MWR (Base-Case)	Without setting payback period limit	Set payback period limit at 15 months
Water elimination (t/hr)	-	-	D ₁₀ = 0	-
Water reduction (t/hr)	-	-	$\alpha_{6,1}D_6 = 3.72$ $\alpha_{8,1}D_8 = 7.75$ $\alpha_{14,1}D_{14} = 0.16$	$\alpha_{6,1}D_6 = 3.72$ $\alpha_{8,1}D_8 = 7.75$ $\alpha_{14,1}D_{14} = 0.16$
Total reused/recycled water (t/hr)	-	2.13	2.53	2.03
Total external water sources (t/hr)	-	-	0.21	0.21
Total regenerated water (t/hr)	-	-	6.57	0.23
Total fresh water consumption (t/hr)	28.82	26.69	18.51	25.42
Total wastewater generation (t/hr)	9.44	7.31	0	6.83
Net annual savings (USD/yr)	-	-	105,383	33,589
Net capital investment (USD)	-	-	197,183	41,986
Total payback period (yr)	-	-	1.87	1.25

Highlights of other results

Handani, Z.B., Wan Alwi, S.R., Hashim, H., **Z.A. Manan**, Holistic Approach For Design Of Minimum Water Networks Using The Mixed Integer Linear Programming (MILP) Technique, Industrial and Engineering Chemistry Research, Volume 49, Issue 12, 16 June 2010, Pages 5742-5751.

MALAYSIAN NEWSPRINT INDUSTRIES

UNIVERSITI TEKNOLOGI MALAYSIA

FW reduction: 95.3 % WW reduction: 64.7 % Net annual savings = USD 5, 400 /year Payback period = 5 years

SEMI-CONDUCTOR PLANT FW reduction: 85.1% WW reduction: 97.7% Net annual savings = RM 190, 000 /year Payback period = 4 months

CHLOR ALKALI PLANT FW reduction: 35.8% WW reduction: 100% Net annual savings = USD 105, 000 /year Payback period = 1.87 years

PAPER MILL PLANT FW reduction: 14% WW reduction: 14% Net annual savings = USD 150, 000 /year Payback period = 1.5 years

Optimal Water – Tool for Holistic Water Minimisation

UNIVERSITI TEKNOLOGI MALAYSIA

Advantages-Disadvantages of MODWN & CEMWN

MODWN		CEMWN		
Advantages	Disadvantages	Advantages	Disadvantages	
Can handle multiple contaminants problem	Not providing good insight to designer during network synthesis	Provides an interactive, quick and efficient guide to screen design options involving process changes	Only applicable for single contaminant system	
Considers simultaneously all factors that contributes to overall network cost effectiveness	Very dependent on good starting points and do not always guarantee global optimum	Help in getting physical insight of the problem through graphical procedures	Tedious graphical step and manual heuristic procedures	
Decision tool to decide an appropriate water management schemes to be implemented			Only suitable for simple systems with simple constraints	
Minimum water targets and design an optimal water network is generated simultaneously				

WATER SUSTAINABILITY via HOLISTIC WATER MINIMISATION

Safeguard company's license to operate

Reduce purchasing, treatment and discharge cost

Avoid production disruption

Protects the environment

zain@cheme.utm.my

Industry; Public & Commercial Facilities; Domestic & Individuals

www.utm.my

innovative • entrepreneurial • global ¹⁴³

Holistic Water Minimisation

The Good & The Bad in (5) UTM

www.utm.my

innovative • entrepreneurial • global ¹⁴⁴

Key Take Home Messages

Water shortage – one of the world's biggest risk Engineer water sustainability via Holistic WM [subject to W3E nexus impact] Apply the winning strategy of blending power with Insights

Process Systems Engineering Centre (PROSPECT), Faculty of Chemical Engineering, Universiti Teknologi Malaysia (UTM) Centre for Process Integration and Intensification - CPI², Research Institute of Chemical Technology and Process Engineering, Faculty of Information Technology - MÜKKI, University of Pannonia, Veszprém, Hungary Ministry of Higher Education (MOHE) MALAYSIA

A Huge Thank You, and Congratulations to...

10th Conference on Sustainable Development of Energy, Water and Environment Systems

September 27 - October 3, 2015, Dubrovnik, Croatia

